

Bangladesh Sweden Polytechnic Institute

Kaptai, Rangamati Hill Tracts

Automobile Technology 4th Semester

Semester Plan (Probidan-2022) Engineering Thermodynamics (27131)

Т	Р	С
3	3	4

Teacher's Name: Md. Foyzullah, Junior Instructor (Tech/Power), Automobile Technology

No. of	No. of	Theory Class Content	Practical	Remarks
Week	Class		Class	
01	01	 1.1 Define thermodynamic, system, boundary, surroundings and the universe. 1.2 Mention types of systems. 1.3 Describe close, open, isolated, flow, non-flow systems. 1.4 Mention the applications of thermodynamics in the engineering field. 		
	02	 1.5 Explain the extensive & intensive properties of thermodynamics systems 1.6 Mention the units of thermodynamics systems. 1.7 State thermodynamic state, path, process, quasi-static process, reversible & irreversible process and Thermodynamics equilibrium. 1.8 Define point function, path function and control volume. 	Verify First Law of thermodynam ics with I.C. Engine	
	03	 2.1 Define heat, temperature and pressure. 2.2 Explain different types of heat, temperature scale and pressure. 2.3 Mention the units of heat, temperature scale and pressure. 2.4 Convert one unit to another unit of heat, temperature scale and pressure. 2.5 Distinguish between heat and temperature. 2.6 Explain heat is a low-grade energy and work is a high-grade energy. 2.7 Solve problems on heat, temperature scale and pressure. 		
02	01	3.1 State the Zeroth law of thermodynamics.3.2 Mention the First law of thermodynamics.3.3 Describe the First law of thermodynamics	Verify Second Law thermodynam ics with I.C. Engine	
	02	3.4 Explain the limitation of First law of thermodynamics.3.5 State the corollaries of First law of thermodynamics.3.6 Describe the first law closed system application.3.7 Describe the first law open system application.		
	03	 4.1 State the 2nd law of thermodynamics. 4.2 Explain the 2nd law of thermodynamics. 4.3 Explain the limitation of 2nd law of thermodynamics. 4.4 State the corollaries of 2nd law of thermodynamics. 4.5 Describe the physical significance of 1st and 2nd law of thermodynamics. 		
03	01	4.6 State the 3rd law of thermodynamics.4.7 Solve problems on the laws of thermodynamic.	Verify the second law of thermodynam ics with the	

		5.1 Define internal energy.	refrigeration	
		5.2 Define enthalpy & specific enthalpy.	cycle	
	02		cycic	
		5.3 Explain the internal energy of a gas heated at constant		
		volume and constant pressure.		
		5.4 Relate between internal energy and enthalpy.		
	03	5.5 Explain Joule's law.		
		5.6 Solve problems on change of internal energy and enthalpy		
		of gases.		
	01	Quize Test-01		
		6.1 State thermodynamic processes.		
	02	6.2 Explain the flow processes and non-flow processes of		
		gases.	Compare Otto	
		6.3 Describe the various non-flow thermodynamic processes	and Diesel	
04		with P-V and T-S diagrams.	cycles	
		6.4 Determine the work done by the gases during the above	cycles	
		process.		
	03	6.5 Explain the steady and unsteady flow processes.		
		6.6 Describe the steady flow energy equations.		
		6.7 Solve problems on thermodynamic processes.		
		7.1 Define entropy.		
	01	7.2 State the importance of entropy.		
	01	7.3 Describe the principle of increase of entropy.	Compare	
		7.4 Explain the relation between heat & entropy.	radiators,	
		7.5 Describe the general expression for change of entropy of a	evaporators	
~ ~	02	perfect gas during various thermodynamic processes.	and	
05		7.6 Solve problems on entropy of different thermodynamic	condensers of	
		processes.	heat	
	03	8.1 Mention the three-state of a substance.	exchangers	
		8.2 Distinguish between steam and vapors.		
		8.3 Discuss the triple point of a substance.		
		8.4 List the properties of vapors.		
	01	Class Test-01		
	01	8.5 Explain the formation of steam at constant pressure.	Demonstrate	
	02	8.6 Describe wet steam, dry saturated steam, superheated	the 4-stroke	
06		steam, dryness fraction, specific volume of steam.	Otto Cycle	
00		9.1 Define thermodynamic cycle.	with an	
		9.2 Classify the thermodynamic cycle.	engine	
	03	9.3 Explain the reversible and irreversible cycles.		
		9.3 Explain the reversible and meversible cycles.		
07		Mid Term Examination		
07				
		10.1 Define Air Standard Cycle.		
	01	10.2 Describe the Carnot cycle with P-V and T-S diagrams.		
		10.3 Calculate air standard efficiencies of Carnot cycles.		
		10.4 State Otto cycle, Diesel cycle with P-V and T-S diagrams	Demonstrate	
	02	of conventional air cycles.	the 4-stroke	
08		10.5 Explain the air standard efficiency of Otto cycle, Diesel	Diesel Cycle	
		cycle.	with an	
	03	10.6 Compare Otto and Diesel cycles.	engine	
		10.7 Compare the theoretical Otto and Diesel cycles with the		
		actual Otto and Diesel cycles.		
		10.8 Solve problems on different air cycles.		
	l	1 10.0 Joive problems on unreferit all cycles.	I <u>L</u>	

09	01	 11.1 Define vapor power cycle. 11.2 Describe the Rankin cycle with incomplete evaporation and modified Rankine cycle with superheated steam. 11.3 Define reheat, regenerative and reheat-regenerative vapor cycles. 	Determine the
	02	 11.4 Explain the reheat, regenerative and reheat-regenerative vapor cycles with P-V and T-S diagrams. 11.5 Distinguish among the reheat, regenerative and reheat-regenerative vapor cycles. 11.6 Describe the binary vapor cycle and topping cycle. 	mechanical equivalent of heat by Joule's apparatus
	03	12.1 State heat engine, refrigeration and heat pump.12.2 Describe the reverse cannot cycle with P-V and T-S diagrams.12.3 Describe the vapor compression mechanical refrigeration cycle.	
	01	Quize Test-02	Demonstrate
10	02	12.4 Calculate the Coefficient of performance COP (heating & refrigerating)12.5 Describe the capacity of the refrigerating machine.	the heat transfer modes
	03	12.6 Describe the vapor absorption refrigeration cycle. 12.7 Solve problems on COP and TR.	Conduction, convention and radiation with refrigerator
	01	Class Test-02	
11	02	 13.1 Define IC engine. 13.2 Classify the IC engine on the basis of different terms. 13.3 Explain the terms bore and stroke, piston displacement, clearance volume and compression ratio. 	Observe Rankin cycle
	03	 13.4 List the moving parts and stationery parts of an IC engine. 13.5 Mention the function of stationary and moving parts of an IC engine. 13.6 State the working principle of 2-stroke and 4-stroke SI & CI engines. 13.7 Compare the 2-stroke and 4-stroke engines. 	with a steam turbine model
12	01	 14.1 Explain the three modes of heat transfer. 14.2 Distinguish among conduction, convection and radiation of heat. 14.3 Explain Fourier's law of thermal conductivity. 14.4 Explain Newton's law of cooing for convective heat transfer. 	
	02	 14.5 State Stefan-Boltzmann law of heat radiation. 14.6 Define heat exchanger. 14.7 Classify heat exchangers. 14.8 Explain Radiator, condenser and Evaporator of heat exchangers. 	
	03	 15.1 Define boiler. 15.2 Classification of boilers. 15.3 Discuss the different types of boiler 15.4 Mention the utility of boiler. 15.5 State the operational procedure of boiler operation. 15.6 Merits and demerits of fire tube and water tube boiler. 15.7 Explain boiler efficiency. 	

REFERENCE BOOKS:

Author Title Publisher

- > Thermal Engineering- Mahesh M Rathore.
- > Thermal Engineering Heat Power- A R Basu.
- A Text book of ThermalEngineering R. S. Khurmi and J. K.Gupta.
- > Basic and applied thermodynamics- P K Nag.
- > Applied Thermodynamics- Rai & Sarao.
- ➢ Heat &Mass Transfer- Dr. D.S. Kumar.
- ➤ Thermal Engineering- A.S. Sarao.
- Heat and Mass Transfer- H.B.Kaswani.
- > Heat Thermodynamics and Statistical Physics- Brijlal-N. Subrahmanyam, P.S.Hemen.